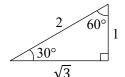
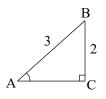

図形と計量

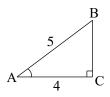

1

- (1) 右の図の直角三角形 ABC において、 sinA, cosA, tanA の値を求めよ。
- A 12 C

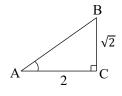
(2) 右の図の直角三角形 ABC において、 sinA, cosA, tanA の値を求めよ。

- (3) 右の図の直角三角形を参考に、 次の三角比の値を求めよ。
 - ① sin45°
 - ② cos60°
 - ③ tan30°



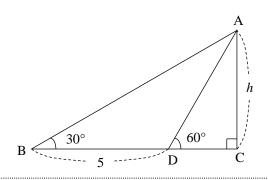

2

三角比の表を用いて、次の図の 直角三角形 ABC における $\angle A$ の およその大きさ A を求めよ。


(1)

(2)

(3)


三角比の表

A	sinA	$\cos A$	tanA				
~				A	sinA	cosA	tanA
25°	0.4226	0.9063	0.4663	35°	0.5736	0.8192	0.7002
26°	0.4384	0.8988	0.4877	36°	0.5878	0.8090	0.7265
27°	0.4540	0.8910	0.5095	37°	0.6018	0.7986	0.7536
28°	0.4695	0.8829	0.5317	38°	0.6157	0.7880	0.7813
29°	0.4848	0.8746	0.5543	39°	0.6293	0.7771	0.8098
30°	0.5000	0.8660	0.5774	40°	0.6428	0.7660	0.8391
31°	0.5150	0.8572	0.6009	41°	0.6561	0.7547	0.8693
32°	0.5299	0.8480	0.6249	42°	0.6691	0.7431	0.9004
33°	0.5446	0.8387	0.6494	43°	0.6820	0.7314	0.9325
34°	0.5592	0.8290	0.6745	44°	0.6947	0.7193	0.9657
				45°	0.7071	0.7071	1.0000
				~			

当該ファイルに関連のある部分を抜粋しています。

3

右の図のhを求めよ。

4

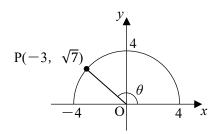
 θ は鋭角とする。

- (2) $\tan \theta = \frac{1}{7}$ のとき、 $\sin \theta \ \ \ \cos \theta$ の値を求めよ。

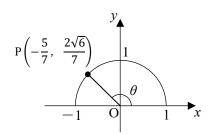
5

次の三角比を 45° より小さい角の三角比で表せ。

(1) sin80°


(2) cos50°

(3) tan64°


6

(1) 次の図において、 $\sin\theta$ 、 $\cos\theta$ 、 $\tan\theta$ の値を求めよ。

 \bigcirc

 $\widehat{(2)}$

- (2) 次の三角比の値を求めよ。
 - ① sin120°
- ② cos135°

③ tan150°

Math-Aquarium【練習問題(余白なし)】図形と計量

7

次の三角比を 90° より小さい角の三角比で表せ。

(1) sin160°

(2) cos105°

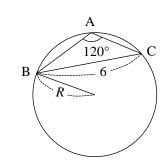
(3) tan128°

8

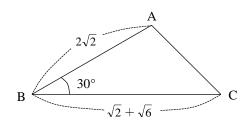
 $0^{\circ} \leq \theta \leq 180^{\circ}$ のとき、次の等式を満たす θ を求めよ。

- $(1) \quad \sin \theta = \frac{\sqrt{3}}{2}$
- $(2) \quad \cos \theta = -\frac{1}{\sqrt{2}}$
- (3) $\tan \theta = -\sqrt{3}$

9


0° ≦θ≦180° とする。

- (1) $\sin \theta = \frac{15}{17}$ のとき、 $\cos \theta \ge \tan \theta$ の値を求めよ。
- (2) $\tan \theta = -\frac{2}{11}$ のとき、 $\sin \theta \ \ \ \cos \theta$ の値を求めよ。


1 0

 \triangle ABC において、辺 BC、CA、AB の長さをそれぞれ a、b、c、 \angle A、 \angle B、 \angle C の大きさをそれぞれ A、B、C で表すことにする。

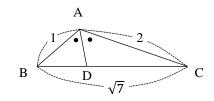
(1) $A=120^{\circ}$, a=6 のときの外接円の半径 R を求めよ。

(2) $a=\sqrt{2}+\sqrt{6}$, $B=30^\circ$, $c=2\sqrt{2}$ のときのA, b, Cをそれぞれ求めよ。

1 1

 $\cos A \sin C = \sin B$ が成り立つとき、 $\triangle ABC$ はどのような形の三角形か。

1 2


次の△ABC の面積を求めよ。

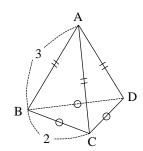
- (1) AB=3, AC=4, $A=45^{\circ}$
- (2) AB=3, AC=5, BC=7

13 次の空欄を埋めよ。

 \triangle ABC において、 $a=\sqrt{7}$ 、b=2、c=1 のとき、 $\cos A=$ (P) , すなわち \angle A=(A) よって、 \triangle ABC の面積は(D) である。さらに、 \triangle A の二等分線と BC の交点を D としたとき、

AD の長さは(エ) である。

1 4


 \triangle ABC において、 $A=45^{\circ}$ 、b=8、 $c=\sqrt{2}$ のとき、内接円の半径 r を求めよ。

研究 1

円に内接する四角形 ABCD において、AB=6、BC=7、CD=2、DA=3 のとき、対角線 AC の長さ、四角形 ABCD の面積 S をそれぞれ求めよ。

研究 2

右の図のような、正三角錐 ABCD の体積を求めよ。

