Graphics and Measurement

Using the table of trigonometric ratios,

find the approximate size A of angle A

in right triangle ABC in the following figures.

A	sinA	cosA	tanA				
<				A	sinA	cosA	tan <i>A</i>
25°	0.4226	0.9063	0.4663	35°	0.5736	0.8192	0.7002
26°	0.4384	0.8988	0.4877	36°	0.5878	0.8090	0.7265
27°	0.4540	0.8910	0.5095	37°	0.6018	0.7986	0.7536
28°	0.4695	0.8829	0.5317	38°	0.6157	0.7880	0.7813
29°	0.4848	0.8746	0.5543	39°	0.6293	0.7771	0.8098
30°	0.5000	0.8660	0.5774	40°	0.6428	0.7660	0.8391
31°	0.5150	0.8572	0.6009	41°	0.6561	0.7547	0.8693
32°	0.5299	0.8480	0.6249	42°	0.6691	0.7431	0.9004
33°	0.5446	0.8387	0.6494	43°	0.6820	0.7314	0.9325
34°	0.5592	0.8290	0.6745	44°	0.6947	0.7193	0.9657
				45°	0.7071	0.7071	1.0000
				\sim			

Table of trigonometric ratios

The table above is an excerpt of the relevant parts of this file.

solution

(1)
$$\sin A = \frac{2}{3} \approx 0.6667$$
.

From the table of trigonometric ratios, $\sin 41^\circ = 0.6561$, $\sin 42^\circ = 0.6691$.

The value of $\sin 42^\circ$ is closest to 0.6667, so $A \approx 42^\circ$.

(2)
$$\cos A = \frac{4}{5} = 0.8$$
.

From the table of trigonometric ratios, $\cos 36^\circ = 0.8090$ and $\cos 37^\circ = 0.7986$. The value of $\cos 37^\circ$ is closest to 0.8, so $A \approx 37^\circ$.

(3)
$$\tan A = \frac{\sqrt{2}}{2}$$
. $\sqrt{2} = 1.4142\cdots$, so it is $\frac{\sqrt{2}}{2} \approx 0.7071$.

From the table of trigonometric ratios, $\tan 35^\circ = 0.7002$ and $\tan 36^\circ = 0.7265$. The value of $\tan 35^\circ$ is closest to 0.7071, so $A \approx 35^\circ$.

In \triangle ADC, it is DC : AC = 1 : $\sqrt{3}$, therefore DC : $h = 1 : \sqrt{3}$. Thus, DC = $\frac{h}{\sqrt{3}} = \frac{\sqrt{3}}{3}h$.

In
$$\triangle$$
 ABC, it is AC : BC = 1 : $\sqrt{3}$, therefore $h : \left(5 + \frac{\sqrt{3}}{3}h\right) = 1 : \sqrt{3}$.

Thus,
$$5 + \frac{\sqrt{3}}{3}h = \sqrt{3}h$$
. From $\frac{2\sqrt{3}}{3}h = 5$, $h = \frac{15}{2\sqrt{3}} = \frac{5\sqrt{3}}{2}$

Alternative solution

Using the fact that $\triangle ABD$ is an isosceles triangle with AD=DB=5, it can also be obtained from AD : AC=2 : $\sqrt{3}$.

 $\begin{array}{c} \textbf{4} \\ \theta \text{ shall be an acute angle.} \end{array}$

(1) Find the values of $\sin \theta$ and $\tan \theta$ when $\cos \theta = \frac{1}{2}$.

(2) Find the values of $\sin \theta$ and $\cos \theta$ when $\tan \theta = \frac{1}{7}$.

solution

(1) From $\sin^2 \theta + \cos^2 \theta = 1$, $\sin^2 \theta = 1 - \cos^2 \theta$. Substituting $\cos \theta = \frac{1}{3}$ for this, we have

$$\sin^2 \theta = 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9}.$$
 Since θ is an acute angle, $\sin \theta > 0.$

Therefore, it becomes $\sin \theta = \sqrt{\frac{8}{9} = \frac{2\sqrt{2}}{3}}$. Also, it becomes $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{2\sqrt{2}}{3} \div \frac{1}{3} = \frac{2\sqrt{2}}{3} \times 3 = 2\sqrt{2}$.

(2) Substituting
$$\tan \theta = \frac{1}{7}$$
 for $1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$, we have $\frac{1}{\cos^2 \theta} = 1 + \left(\frac{1}{7}\right)^2 = 1 + \frac{1}{49} = \frac{50}{49}$

Therefore, $\cos^2 \theta = \frac{49}{50}$. Since θ is an acute angle, $\cos \theta > 0$. Thus, $\cos \theta = \sqrt{\frac{49}{50}} = \frac{7}{5\sqrt{2}}$.

Also,
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 to $\sin \theta = \tan \theta \cdot \cos \theta = \frac{1}{7} \cdot \frac{7}{5\sqrt{2}} = \frac{1}{5\sqrt{2}}$.

Alternative solution

(1) From $\cos \theta = \frac{1}{3}$, draw right triangle ABC with AB=3, AC=1, and $\angle C=90^{\circ}$. By the Pythagorean theorem, it is BC²=AB²-AC²=3²-1²=8. BC= $\sqrt{8}=2\sqrt{2}$ From BC>0. Therefore, $\sin \theta = \frac{2\sqrt{2}}{3}$, $\tan \theta = \frac{2\sqrt{2}}{1} = 2\sqrt{2}$. (2) From $\tan \theta = \frac{1}{7}$, draw right triangle ABC with AC=7, BC=1, $\angle C=90^{\circ}$. By the Pythagorean theorem, it is AB²=AC²+BC²=7²+1²=50.

Therefore,
$$\sin \theta = \frac{1}{5\sqrt{2}}$$
, $\cos \theta = \frac{7}{5\sqrt{2}}$

 $AB = \sqrt{50} = 5\sqrt{2}$ From AB > 0.

5							
Express the following trigonometric ratios for angles smaller than 45°.							
(1) sin80°	(2) cos50°	(3) tan64°					

(1)
$$80^{\circ} = 90^{\circ} - 10^{\circ}$$
, and $\sin(90^{\circ} - \theta) = \cos\theta$, so
 $\sin 80^{\circ} = \sin(90^{\circ} - 10^{\circ}) = \cos 10^{\circ}$.

(2)
$$50^\circ = 90^\circ - 40^\circ$$
, and $\cos(90^\circ - \theta) = \sin\theta$, so
 $\cos 50^\circ = \cos(90^\circ - 40^\circ) = \sin 40^\circ$.

(3)
$$64^\circ = 90^\circ - 26^\circ$$
, and $\tan(90^\circ - \theta) = \frac{1}{\tan \theta}$, so

$$\tan 64^\circ = \tan(90^\circ - 26^\circ) = \frac{1}{\tan 26^\circ}$$

(1) ① Since r=4 and the coordinates of point P are $(-3, \sqrt{7})$,

$$\sin\theta = \frac{\sqrt{7}}{4}, \quad \cos\theta = \frac{-3}{4} = -\frac{3}{4}, \quad \tan\theta = \frac{\sqrt{7}}{-3} = -\frac{\sqrt{7}}{3}.$$

② Since r=1 and the coordinates of point P are $\left(-\frac{5}{7}, \frac{2\sqrt{6}}{7}\right)$,

$$\sin\theta = \frac{\frac{2\sqrt{6}}{7}}{1} = \frac{2\sqrt{6}}{7}, \qquad \cos\theta = \frac{-\frac{5}{7}}{1} = -\frac{5}{7}, \qquad \tan\theta = \frac{\frac{2\sqrt{6}}{7}}{-\frac{5}{7}} = -\frac{2\sqrt{6}}{5}.$$

(2) ① When $\theta = 120^\circ$, point P can be taken as shown in the figure on the right.

Therefore, $\sin 120^\circ = \frac{\sqrt{3}}{2}$.

② When $\theta = 135^{\circ}$, point P can be taken as shown in the figure on the right.

Therefore,
$$\cos 135^\circ = \frac{-1}{\sqrt{2}} = -\frac{1}{\sqrt{2}}$$

(3) When $\theta = 150^{\circ}$, point P can be taken as shown in the figure on the right.

Therefore, $\tan 150^{\circ} = \frac{1}{-\sqrt{3}} = -\frac{1}{\sqrt{3}}$. $P(-\sqrt{3}, 1)$

7 Exp	ress the following trigonometric	e ratic	os for angles smaller than 90°.		
(1)	sin160°	(2)	cos105°	(3)	tan128°

(1)
$$160^\circ = 180^\circ - 20^\circ$$
, and $\sin(180^\circ - \theta) = \sin\theta$, so
 $\sin 160^\circ = \sin(180^\circ - 20^\circ) = \sin 20^\circ$.

(2)
$$105^{\circ} = 180^{\circ} - 75^{\circ}$$
, and $\cos(180^{\circ} - \theta) = -\cos\theta$, so
 $\cos 105^{\circ} = \cos(180^{\circ} - 75^{\circ}) = -\cos75^{\circ}$.

(3)
$$128^{\circ} = 180^{\circ} - 52^{\circ}$$
, and $\tan(180^{\circ} - \theta) = -\tan\theta$, so
 $\tan(128^{\circ}) = \tan(180^{\circ} - 52^{\circ}) = -\tan(52^{\circ})$.

8 When $0^{\circ} \leq \theta \leq 180^{\circ}$, find θ satisfying the following equations. (1) $\sin \theta = \frac{\sqrt{3}}{2}$ (2) $\cos \theta = -\frac{1}{\sqrt{2}}$ (3) $\tan \theta = -\sqrt{3}$

solution

(1) When $\sin \theta = \frac{\sqrt{3}}{2}$, if points P and Q are placed

on the semicircle of radius 2 as shown in the figure on the right, the required θ are $\angle AOP$ and $\angle AOQ$. Therefore, $\theta = 60^{\circ}$, 120° .

(2) When $\cos \theta = -\frac{1}{\sqrt{2}}$, if point P is placed on the semicircle of radius $\sqrt{2}$ as shown in the figure on the right, the required θ is $\angle AOP$. Therefore, $\theta = 135^{\circ}$.

(3) Since
$$\tan \theta = -\sqrt{3} = \frac{\sqrt{3}}{-1}$$
 and $(-1)^2 + (\sqrt{3})^2 = 2^2$,

if we take point P on the semicircle of radius 2 as shown in the figure on the right, the required θ is $\angle AOP$. Therefore, $\theta = 120^{\circ}$

Math-Aquarium [Exercises + Solutions] Graphics and Measurement

9 $0^{\circ} \leq \theta \leq 180^{\circ}$. (1) Find the values of $\cos \theta$ and $\tan \theta$ when $\sin \theta = \frac{15}{17}$. (2) Find the values of $\sin \theta$ and $\cos \theta$ when $\tan \theta = -\frac{2}{11}$.

solution

(1) From
$$\sin^2 \theta + \cos^2 \theta = 1$$
, $\cos^2 \theta = 1 - \sin^2 \theta$. Substituting $\sin \theta = \frac{15}{17}$ into this gives
 $\cos^2 \theta = 1 - \left(\frac{15}{17}\right)^2 = 1 - \frac{225}{289} = \frac{64}{289}$.
(i) $\cos \theta > 0$,
(i) $\cos \theta > 0$,
 $\cos \theta = \sqrt{\frac{64}{289}} = \frac{8}{17}$. Also, $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{15}{17} \div \frac{8}{17} = \frac{15}{17} \times \frac{17}{8} = \frac{15}{8}$.
(ii) $\cos \theta < 0$,
then $\cos \theta = -\sqrt{\frac{64}{289}} = -\frac{8}{17}$. Also, $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{15}{17} \div \left(-\frac{8}{17}\right) = \frac{15}{17} \times \left(-\frac{17}{8}\right) = -\frac{15}{8}$.
(2) Substituting $\tan \theta = -\frac{2}{11}$ for $1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$,
we have $\frac{1}{\cos^2 \theta} = 1 + \left(-\frac{2}{11}\right)^2 = 1 + \frac{4}{121} = \frac{125}{121}$.
Therefore, $\cos^2 \theta = \frac{121}{125}$. $0^\circ \le \theta \le 180^\circ$, $\tan \theta = -\frac{2}{11} < 0$, so $90^\circ < \theta < 180^\circ$.
From this, it is $\cos \theta < 0$. Thus, $\cos \theta = -\sqrt{\frac{121}{125}} = -\frac{11}{5\sqrt{5}}$.
Also, $\tan \theta = \frac{\sin \theta}{\cos \theta}$ to $\sin \theta = \tan \theta \cdot \cos \theta = \left(-\frac{2}{11}\right) \cdot \left(-\frac{11}{5\sqrt{5}}\right) = \frac{2}{5\sqrt{5}}$.

9

In \triangle ABC, let the lengths of sides BC, CA, and AB be denoted by *a*, *b*, and *c*, respectively, and the sizes of \angle A, \angle B, and \angle C be denoted by *A*, *B*, and *C*, respectively.

- (1) Find the radius *R* of the circumscribed circle when $A = 120^{\circ}$ and a = 6.
- (2) Find A, b, and C when $a=\sqrt{2}+\sqrt{6}$, $B=30^{\circ}$, and $c=2\sqrt{2}$, respectively.

solution

(1) By the sine theorem, since $\frac{6}{\sin 120^\circ} = 2R$, then $\frac{6}{\sqrt{3}} = 2R$.

Therefore, it is $\mathbf{R} = \left(6 \div \frac{\sqrt{3}}{2}\right) \times \frac{1}{2} = \frac{6}{\sqrt{3}} = 2\sqrt{3}$.

(2) By the cosine theorem, we have

$$b^{2} = (\sqrt{2} + \sqrt{6})^{2} + (2\sqrt{2})^{2} - 2 \cdot (\sqrt{2} + \sqrt{6}) \cdot 2\sqrt{2} \cdot \cos 30^{\circ} = 2 + 2\sqrt{12} + 6 + 8 - 4\sqrt{2} (\sqrt{2} + \sqrt{6}) \cdot \frac{\sqrt{3}}{2}$$
$$= 16 + 4\sqrt{3} - 4\sqrt{3} - 12 = 4.$$

B

Since b > 0, b = 2.

By the sine theorem, since
$$\frac{2}{\sin 30^\circ} = \frac{2\sqrt{2}}{\sin C}$$
, $\frac{2}{\frac{1}{2}} = \frac{2\sqrt{2}}{\sin C}$.

Therefore, $\sin C = 2\sqrt{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{\sqrt{2}}{2}$. From $2\sqrt{2} < \sqrt{2} + \sqrt{6}$, since it is C < A, it is $C = 45^{\circ}$, $A = 180^{\circ} - 30^{\circ} - 45^{\circ} = 105^{\circ}$. Thus, $(A, b, C) = (105^{\circ}, 2, 45^{\circ})$.

If $\cos A \sin C = \sin B$, what shape of triangle is $\triangle ABC$?

solution

Substituting
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\sin C = \frac{c}{2R}$, and $\sin B = \frac{b}{2R}$

into the given equation, respectively, yields

$$\frac{b^2+c^2-a^2}{2bc}\cdot\frac{c}{2R}=\frac{b}{2R}.$$

Multiplying both sides by 4bR yields $b^2+c^2-a^2=2b^2$. From this, we get $a^2+b^2=c^2$.

Therefore, $\triangle ABC$ is an isosceles triangle with $\angle C = 90^{\circ}$.

Find the area of the following $\triangle ABC$. (1) AB=3, AC=4, A=45°

(2) AB=3, AC=5, BC=7

solution

(1)
$$S = \frac{1}{2} \cdot 4 \cdot 3 \cdot \sin 45^\circ = \frac{1}{2} \cdot 4 \cdot 3 \cdot \frac{1}{\sqrt{2}} = 3\sqrt{2}$$
.

(2) By the cosine theorem, we have $\cos A = \frac{5^2 + 3^2 - 7^2}{2 \cdot 5 \cdot 3} = \frac{25 + 9 - 49}{30} = -\frac{1}{2}$.

 $\sin^2 A + \cos^2 A = 1 \ \text{and} \ 0^\circ < A < 180^\circ$, then $\sin A > 0$, so

$$\sin A = \sqrt{1 - \left(-\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2}.$$

Therefore, $S = \frac{1}{2}bc \sin A = \frac{1}{2} \cdot 5 \cdot 3 \cdot \frac{\sqrt{3}}{2} = \frac{15\sqrt{3}}{4}$. Alternative solution

Use Heron's formula.

$$s = \frac{a+b+c}{2} = \frac{7+5+3}{2} = \frac{15}{2}, \text{ so it is}$$

$$S = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{\frac{15}{2}(\frac{15}{2}-7)(\frac{15}{2}-5)(\frac{15}{2}-3)}$$

$$= \sqrt{\frac{15}{2} \cdot \frac{1}{2} \cdot \frac{5}{2} \cdot \frac{9}{2}} = \frac{15\sqrt{3}}{4}.$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{4 + 1 - 7}{2 \cdot 2 \cdot 1} = -\frac{1}{2}. \qquad 0^\circ \le \angle A \le 180^\circ \text{ , so it is } \angle A = 120^\circ.$$
$$\triangle ABC = \frac{1}{2} \cdot 2 \cdot 1 \cdot \sin 120^\circ = \frac{1}{2} \cdot 2 \cdot 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}.$$

 $\triangle ABD + \triangle ACD = \triangle ABC$, so by the area formula, it is

$$\frac{1}{2} \cdot AD \cdot 1 \cdot \sin 60^\circ + \frac{1}{2} \cdot AD \cdot 2 \cdot \sin 60^\circ = \frac{\sqrt{3}}{2}.$$

From this it follows that $\frac{\sqrt{3}}{4}AD + \frac{\sqrt{3}}{2}AD = \frac{\sqrt{3}}{2}$, $\frac{3\sqrt{3}}{4}AD = \frac{\sqrt{3}}{2}$.

Therefore, $AD = \frac{\sqrt{3}}{2} \cdot \frac{4}{3\sqrt{3}} = \frac{2}{3}$. (a) $-\frac{1}{2}$, (b) **120°**, (c) $\frac{\sqrt{3}}{2}$, (d) $\frac{2}{3}$

Find the radius r of the inscribed circle in $\triangle ABC$ when $A=45^\circ$, b=8, and $c=\sqrt{2}$.

solution

Let S be the area of $\triangle ABC$,

$$S = \frac{1}{2}bc\sin A = \frac{1}{2} \cdot 8 \cdot \sqrt{2} \cdot \sin 45^{\circ}$$
$$= \frac{1}{2} \cdot 8 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 4.$$

Also, $a^2 = b^2 + c^2 - 2bc\cos A = 8^2 + (\sqrt{2})^2 - 2 \cdot 8 \cdot \sqrt{2} \cdot \cos 45^\circ$

$$= 64 + 2 - 2 \cdot 8 \cdot \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 50 \,.$$

a > 0, so it is $a = 5\sqrt{2}$.

Substituting the respective values into $S = \frac{1}{2}r(a+b+c)$ yields $4 = \frac{1}{2}r(5\sqrt{2}+8+\sqrt{2})$.

$$4 = (4 + 3\sqrt{2})r, \text{ so it is } r = \frac{4}{4 + 3\sqrt{2}} = \frac{4(4 - 3\sqrt{2})}{(4 + 3\sqrt{2})(4 - 3\sqrt{2})} = 6\sqrt{2} - 8$$

Study 1

In quadrilateral ABCD inscribed in a circle, find the length of diagonal AC and the area S of quadrilateral ABCD when AB=6, BC=7, CD=2, and DA=3, respectively.

solution

In $\triangle ABC$, by the cosine theorem, A $AC^2 = 6^2 + 7^2 - 2 \cdot 6 \cdot 7 \cdot \cos \angle ABC$ ·····(1) . $=85-84\cos\angle ABC$ D In $\triangle ADC$, by the cosine theorem, В $AC^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos \angle ADC$ 7 С $=13-12\cos(180^\circ - \angle ABC)$(2) . =13+12cos \angle ABC From (1) and (2), we have $85-84\cos\angle ABC=13+12\cos\angle ABC$. Solving for this, we get $\cos \angle ABC = \frac{3}{4}$. Substituting for (1), we have $AC^2 = 85 - 84 \cdot \frac{3}{4} = 22$. Since AC>0, AC= $\sqrt{22}$. Also, from $\sin \angle ABC = \sqrt{1 - \left(\frac{3}{4}\right)^2} = \frac{\sqrt{7}}{4}$ and $\sin \angle ADC = \sin(180^\circ - \angle ABC) = \sin \angle ABC$, we get $S = \triangle ABC + \triangle ADC = \frac{1}{2} \cdot 6 \cdot 7 \cdot \frac{\sqrt{7}}{4} + \frac{1}{2} \cdot 2 \cdot 3 \cdot \frac{\sqrt{7}}{4} = 6\sqrt{7}.$

Study 2

Find the volume of a regular triangular pyramid ABCD, as shown in the figure on the right.

solution

Draw a perpendicular line AH from vertex A to the bottom \triangle BCD, which is

 $\triangle ABH \equiv \triangle ACH \equiv \triangle ADH$.

From this, since BH=CH=DH, point H is the outer center of $\triangle BCD$.

Therefore, BH is the radius of the circumscribed circle of \triangle BCD, which is

$$\frac{2}{\sin 60^\circ} = 2BH$$
. From this, we have $BH = \frac{2\sqrt{3}}{3}$.

Since $\triangle ABH$ is a right triangle, it is

$$AH = \sqrt{AB^2 - BH^2} = \sqrt{3^2 - \left(\frac{2\sqrt{3}}{3}\right)^2} = \frac{\sqrt{69}}{3}$$

by the Pythagorean theorem.

Also,
$$\triangle BCD = \frac{1}{2} \cdot 2 \cdot 2 \cdot \sin 60^\circ = \sqrt{3}$$

